Package: scellpam 1.4.6.2

scellpam: Applying Partitioning Around Medoids to Single Cell Data with High Number of Cells

PAM (Partitioning Around Medoids) algorithm application to samples of single cell sequencing techniques with a high number of cells (as many as the computer memory allows). The package uses a binary format to store matrices (either full, sparse or symmetric) in files written in the disk that can contain any data type (not just double) which allows its manipulation when memory is sufficient to load them as int or float, but not as double. The PAM implementation is done in parallel, using several/all the cores of the machine, if it has them. This package shares a great part of its code with packages 'jmatrix' and 'parallelpam' but their functionality is included here so there is no need to install them.

Authors:Juan Domingo [aut, cre], Guillermo Ayala [ctb], Spanish Ministry of Science and Innovation, MCIN/AEI <doi:10.13039/501100011033> [fnd]

scellpam_1.4.6.2.tar.gz
scellpam_1.4.6.2.zip(r-4.5)scellpam_1.4.6.2.zip(r-4.4)scellpam_1.4.6.2.zip(r-4.3)
scellpam_1.4.6.2.tgz(r-4.4-x86_64)scellpam_1.4.6.2.tgz(r-4.4-arm64)scellpam_1.4.6.2.tgz(r-4.3-x86_64)scellpam_1.4.6.2.tgz(r-4.3-arm64)
scellpam_1.4.6.2.tar.gz(r-4.5-noble)scellpam_1.4.6.2.tar.gz(r-4.4-noble)
scellpam.pdf |scellpam.html
scellpam/json (API)
NEWS

# Install 'scellpam' in R:
install.packages('scellpam', repos = c('https://jdmde.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.78 score 9 scripts 224 downloads 30 exports 3 dependencies

Last updated 4 months agofrom:60fc56a799. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 16 2024
R-4.5-win-x86_64OKNov 16 2024
R-4.5-linux-x86_64OKNov 16 2024
R-4.4-win-x86_64OKNov 16 2024
R-4.4-mac-x86_64OKNov 16 2024
R-4.4-mac-aarch64OKNov 16 2024
R-4.3-win-x86_64OKNov 16 2024
R-4.3-mac-x86_64OKNov 16 2024
R-4.3-mac-aarch64OKNov 16 2024

Exports:ApplyPAMBuildAbundanceMatrixCalcAndWriteDissimilarityMatrixCalculateSilhouetteClassifAsDataFrameCsvToJMatdgCMatToJMatFilterBySilhouetteQuantileFilterBySilhouetteThresholdFilterJMatByNameGetJColGetJColByNameGetJColNamesGetJManyColsGetJManyColsByNamesGetJManyRowsGetJManyRowsByNamesGetJNamesGetJRowGetJRowByNameGetJRowNamesGetSeuratGroupsGetSubdiagGetTDJMatInfoJMatToCsvJWriteBinNumSilToClusterSilScellpamSetDebugSceToJMat

Dependencies:clustermemuseRcpp

jmatrixsc

Rendered fromjmatrixsc.Rmdusingknitr::rmarkdownon Nov 16 2024.

Last update: 2023-10-13
Started: 2022-11-28

parallelpamsc

Rendered fromparallelpamsc.Rmdusingknitr::rmarkdownon Nov 16 2024.

Last update: 2024-07-04
Started: 2022-11-28

scellpam

Rendered fromscellpam.Rmdusingknitr::rmarkdownon Nov 16 2024.

Last update: 2023-10-13
Started: 2022-11-28

Readme and manuals

Help Manual

Help pageTopics
ApplyPAMApplyPAM
BuildAbundanceMatrixBuildAbundanceMatrix
CalcAndWriteDissimilarityMatrixCalcAndWriteDissimilarityMatrix
CalculateSilhouetteCalculateSilhouette
ClassifAsDataFrameClassifAsDataFrame
CsvToJMatCsvToJMat
dgCMatToJMatdgCMatToJMat
FilterBySilhouetteQuantileFilterBySilhouetteQuantile
FilterBySilhouetteThresholdFilterBySilhouetteThreshold
FilterJMatByNameFilterJMatByName
GetJColGetJCol
GetJColByNameGetJColByName
GetJColNamesGetJColNames
GetJManyColsGetJManyCols
GetJManyColsByNamesGetJManyColsByNames
GetJManyRowsGetJManyRows
GetJManyRowsByNamesGetJManyRowsByNames
GetJNamesGetJNames
GetJRowGetJRow
GetJRowByNameGetJRowByName
GetJRowNamesGetJRowNames
GetSeuratGroupsGetSeuratGroups
GetSubdiagGetSubdiag
GetTDGetTD
JMatInfoJMatInfo
JMatToCsvJMatToCsv
JWriteBinJWriteBin
NumSilToClusterSilNumSilToClusterSil
ScellpamSetDebugScellpamSetDebug
SceToJMatSceToJMat